SPSS EN ESPAÑOL - PORTAL DE SPSS PARA TODOSAprender SPSS en Español ahora es muy facil, con SPSS PARA TODOS el portal dedicado al SPSS en Español - Curso de SPSS en Español GRATIS

El contenido de esta página requiere una versión más reciente de Adobe Flash Player.

Obtener Adobe Flash Player

Medidas de Distibución - Asimetría y Curtosis

 

Las medidas de distribución nos permiten identificar la forma en que se separan o aglomeran los valores de acuerdo a su representación gráfica. Estas medidas describen la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la información. Su utilidad radica en la posibilidad de identificar las características de la distribución sin necesidad de generar el gráfico. Sus principales medidas son la Asimetría y la Curtosis.

 

 

Lomadee, una nueva especie en la web. La mayor Plataforma de Afiliados de Latinoamérica.

 

1. ASIMETRÍA

Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes [Fig.5-1], cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media.

 

Estados de La Asimetria - Medidas de Distribucion

Figura 5-1

 

El Coeficiente de asimetría, se representa mediante la ecuación matemática,

 

Ecuacion de la Asimetria - Medidas de Distribucion

Ecuación 5-9

 

Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, () la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan:

 

  • (g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad de valores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (± 0.5).
  • (g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media.
  • (g1 < 0): La curva es asimétricamente negativa por lo que los valores se tienden a reunir más en la parte derecha de la media.

 

Desde luego entre mayor sea el número (Positivo o Negativo), mayor será la distancia que separa la aglomeración de los valores con respecto a la media.

 

2. CURTOSIS

Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).

 

Estados de la Curtosis - Medidas de Distribucion

Figura 5-2

 

Para calcular el coeficiente de Curtosis se utiliza la ecuación:

 

Ecuacion de la Curtosis Corregida para SPSS (-3) - Medidas de Distribucion

Ecuacion 5-10

 

Donde (g2) representa el coeficiente de Curtosis, (Xi) cada uno de los valores, () la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta fórmula se interpretan:

 

  • (g2 = 0) la distribución es Mesocúrtica: Al igual que en la asimetría es bastante difícil  encontrar un coeficiente de Curtosis de cero (0), por lo que se suelen aceptar los valores cercanos (± 0.5 aprox.).
  • (g2 > 0) la distribución es Leptocúrtica
  • (g2 < 0) la distribución es Platicúrtica

 

Cuando la distribución de los datos cuenta con un coeficiente de asimetría (g1 = ±0.5) y un coeficiente de Curtosis de (g2 = ±0.5), se le denomina Curva Normal. Este criterio es de suma importancia ya que para la mayoría de los procedimientos de la estadística de inferencia se requiere que los datos se distribuyan normalmente.

 

La principal ventaja de la distribución normal radica en el supuesto que el 95% de los valores se encuentra dentro de una distancia de dos desviaciones estándar de la media aritmética (Fig.5-3); es decir, si tomamos la media y le sumamos dos veces la desviación y después le restamos a la media dos desviaciones, el 95% de los casos se encontraría dentro del rango que compongan estos valores.

 

Figura 5-3

 

Desde luego, los conceptos vistos hasta aquí, son sólo una pequeña introducción a las principales medidas de Estadística Descriptiva; es de gran importancia que los lectores profundicen en estos temas ya que la principal dificultad del paquete SPSS radica en el desconocimiento de los conceptos estadísticos.

 

Las definiciones plasmadas en este capítulo han sido extraídas de los libros Estadística para administradores escrito por Alan Wester de la editorial McGraw-Hill y el libro Estadística y Muestreo escrito por Ciro Martínez editorial Ecoe editores (Octava edición). No necesariamente tienes que guiarte por estos libros ya que en las librerías encontraras una gran variedad de textos que pueden ser de bastante utilidad en la introducción a esta ciencia.


Spss Para Todos - Bogotá - Colombia - Trans.96A # 75 D -10 Int 27 - Tel: (57) (1) 2290010
e-mail: contacta@spssfree.com (Messenger) cursospss@hotmail.com
Recomendamos TODA COLOMBIA - LA CARA AMABLE DE COLOMBIA
Copyright © 2005 - 2007 [Andrés G. Martínez]. Todos los derechos reservados.
Se prohíbe la reproducción parcial o total de sus contenidos sin autorización previa